
A Taxonomy of Decentralized Identifier Methods
for Practitioners

Felix Hoops
Department of Computer Science

Technical University of Munich
Munich, Germany
felix.hoops@tum.de

Alexander Mühle
Hasso-Plattner-Institute

University Potsdam
Potsdam, Germany

alexander.muehle@hpi.de

Florian Matthes
Department of Computer Science

Technical University of Munich
Munich, Germany
matthes@tum.de

Christoph Meinel
Hasso-Plattner-Institute

University Potsdam
Potsdam, Germany

christoph.meinel@hpi.de

Abstract—A core part of the new identity management
paradigm of Self-Sovereign Identity (SSI) is the W3C Decentral-
ized Identifiers (DIDs) standard. The diversity of interoperable
implementations encouraged by the paradigm is key for a less
centralized future, and it is made possible by the concept of
DIDs. However, this leads to a kind of dilemma of choices,
where practitioners are faced with the difficult decision of which
methods to choose and support in their applications. Due to
the decentralized development of DID method specifications and
the overwhelming number of different choices, it is hard to
get an overview. In this paper, we propose a taxonomy of
DID methods with the goal to empower practitioners to make
informed decisions when selecting DID methods. To that end,
our taxonomy is designed to provide an overview of the current
landscape while providing adoption-relevant characteristics. For
this purpose, we rely on the Nickerson et al. methodology for
taxonomy creation, utilizing both conceptual-to-empirical and
empirical-to-conceptual approaches. During the iterative process,
we collect and survey an extensive and potentially exhaustive list
of around 160 DID methods from various sources. The taxonomy
we arrive at uses a total of 7 dimensions and 22 characteristics
to span the contemporary design space of DID methods from the
perspective of a practitioner. In addition to elaborating on these
characteristics, we also discuss how a practitioner can use the
taxonomy to select suitable DID methods for a specific use case.

Index Terms—Identity Management, Self-Sovereign Identity,
Decentralized Identifiers, DID Methods, Taxonomy

I. INTRODUCTION

With the rising public sensitivity for data hoarders on
today’s internet, it is no surprise that we strive to once again
evolve our handling of online identity. Early on, every internet
service held their own identity data in the form of traditional
username and password accounts. But since then, we have
mostly moved on to federated accounts. Tech giants such as
Google, Facebook, and Apple keep our identity information
and negotiate the login with third parties when we request it.

While this is often more convenient, leading to fewer
accounts to keep track of for the user, it also dangerously
centralizes our personal information. This centralization leads

to an array of problems. Naturally, the few big identity
providers make for an attractive target for attackers due to the
vast amounts of critical data. But even more problematic is
the power we give to these identity providers. This starts with
the detailed data they can collect about us due to them being
our intermediary in so many login procedures from online
stores to different social media. That of course means they
know all our personal information, such as gender, legal name,
date of birth and home address. Furthermore, they know with
what services we interact when and from where. All this data
is extremely valuable to advertisers, but also to the identity
providers themselves, as it usually helps them optimize their
service portfolio and thus gives a level of user insight that no
other competitor could ever feasibly reach.

Finally, today’s level of centralization of identity providers
exposes everyone to the risk of service outages. Either by
accident or by design. Any big identity provider having an
outage would leave millions of people locked out of their
accounts with dozens of third party service providers. And
if any identity provider wanted to, or was forced to by a
government, to suspend service to certain people or groups
of people, they could do so in an instant, disrupting the lives
and livelihoods of people and businesses alike.

Decentralizing our global identity management should thus
be a central goal for the near future. Two recent W3C standards
are taking the spotlight as essential tools to reach this goal:
Decentralized Identifiers (DIDs)1 and Verifiable Credentials
(VC)2. The former being an identifier standard, while the latter
standardizes a format for verifiable claims. Anyone can create
censorship resistant, globally unique, universal identifiers in
the form of DIDs. Gathering assertions about themselves,
bound to a specific DID, allows users to turn an identifier
into an identity. Companies can state that someone works for

1https://www.w3.org/TR/did-core/
2https://www.w3.org/TR/vc-data-model-2.0/



them, universities can confirm someone’s status as a student,
and countries can issue fully digital passports.

DIDs promise a future internet turned upside down: from
big identity providers being an intermediary for our every
action towards each user being their own identity keeper.
Independent of implementation technology, this design con-
cept is known as Self-Sovereign Identity (SSI). Through their
independence of third-party actors and their interoperability,
DIDs begin to prove themselves as a crucial technology
enabling this future where every user can bring their own
identity—or account—to every digital service they choose to
interact with.

This level of interoperability is a key point of this W3C
specification and ensures that DIDs can be tailored to specific
use cases and that the specification is extendible to take
advantage of future technologies and infrastructures. However,
currently it might be materializing as a major hurdle to
overcome on the way to broad adoption, as numerous DID
implementations, called DID methods, are created without
much coordination and with vastly different implementation
approaches. This massive and diverse number of very dif-
ferent DID methods makes getting an overview very time-
consuming. Just compiling a list of them is already a challenge
because the few existing lists online are limited in scope and
riddled with errors or inconsistencies.

For DIDs to be used effectively, it is vital that system
architects can quickly gain an overview of existing DID
methods and understand their characteristics and capabilities.
They need to be able to make an informed decision on what
DID methods to support for a given system and what DID
methods to recommend to different stakeholders. To that end,
we present a taxonomy of DID methods tailored to assist
practitioners in selecting the most suitable one for each use
case.

This paper is organized as follows. First, we provide back-
ground on the DID standard in Section II. Next, we review
related work already done by others in Section III before we
go on to describe our methodology to develop our taxonomy in
Section IV. Then, we present our taxonomy for DID selection
along with some general insights we have gained developing
it in Section V. We finish by summarizing our results and
providing some suggestions for future work in Section VI.

II. BACKGROUND

Self-sovereign identity (SSI) is a concept coined by Christo-
pher Allen [1] that can be understood as a form of user-
centered design in identity management. Users govern their
own identity data that they get issued by different issuers. And
users decide when they present what data to which verifier.
Verifiers would ideally never have to directly contact issuers
during the verification procedure.

Decentralized Identifiers (DIDs) are a key technology to im-
plement SSI-conforming systems. They are carefully designed
as a “meta-specification”. That means that the DID standard
does not govern how identifiers are managed, but instead
how sub-standards to manage identifiers are to be defined.

These sub-standards are known as DID methods, and they
are developed completely decentralized. Each method defines
where data for the identifier is stored and how it is created,
read, updated, and deleted. Though, only the ability to create
and read is mandatory.

Each DID is a globally unique, cryptographically verifiable
identifier. To achieve this, asymmetric encryption is leveraged.
Anyone can create a key pair consisting of private and public
key. This process works offline. The resulting public key is
globally unique and can be shared without compromising the
associated private key, given that there are no sufficiently
powerful quantum computers in existence. Apart from encryp-
tion, asymmetric encryption also enables digital signatures.
Encrypting a message with one’s own private key produces a
secure digital signature. For efficiency reasons, almost every
signature scheme encrypts a hash of the message, instead of
the message. Distributing that original message, the signature,
and the public key allows anyone else to confirm that signature
by decrypting the signature with the public key and comparing
it to the message hash. While this is an important technical
foundation, it is not sufficient to create usable decentralized
identity management. DIDs build on this foundation and
enable metadata and key management.

A really simple DID that directly uses a public key could
look like this:

did:key:z6MkhaXgBZD...38x74tKLGpbnnEGta2doK

Any DID generally consists of three parts separated by
colons: the prefix “did”, a method identifier like “key”, and
a method specific part, which is just a public key in this
example. This last part can also be extended into multiple
method specific parts. For example, that is used to indicate
the used infrastructure for DID methods that support multiple
ones. This DID based on Ethereum indicates it is registered
on a testnet, which is referred to by its ID “0x5”:

did:ethr:0x5:0xabcab...c39nEG465ta2abe984193675

Essentially, DID methods provide an abstraction layer for
an asymmetric key pair. Instead of directly using a key pair
and distributing the public key as the identifier, a DID string
contains sufficient information to read or “resolve” the identi-
fier into a DID document. Construction of the document may
be possible from just the identifier (ref. example 1) or require
querying some underlying storage infrastructure, such as the
Ethereum blockchain (ref. example 2). This DID document
is a JSON document containing one or more public keys
associated with the holder, key usage policies, any relevant
service endpoints, and potentially more. A big advantage
of this design is that it allows key rotations and additional
metadata attached to an identifier.

Summarizing, DIDs introduce ground rules for identifiers
that are abstracted from asymmetric public keys and then
support theoretically infinitely many ways to handle this ab-
straction through DID methods. Key to understanding the need
for structure in the DID space is that the DID specification
leaves a lot of room in its ground rules to design valid



DID methods. Relying on centralized infrastructure or services
(e.g., did:dns), fully decentralized infrastructure in the form of
a public blockchain (e.g., did:ethr), or even no external storage
at all (e.g., did:key) is possible when designing a DID method.
Also, the differences in the set of supported operations and
cost can be staggering.

III. RELATED WORK

The field of Self-Sovereign Identity (SSI) and especially the
standard Decentralized Identifiers (DIDs) are still young. At
the time of writing, the W3C VC data model has only been
accepted as a W3C recommendation for 3 years, while the
DID has only been moved to the recommendations status last
year. Understandably, there has been some work structuring
and evaluating DID methods, but not at the scale and longevity
of results required. Past scientific contributions can be divided
into just two categories: first, introduction to and classifica-
tion of SSI components including DIDs, and second, work
on DID evaluation and evaluation criteria. And finally, we
acknowledge the work done outside the scientific community
by looking at different online sources compiling lists of DID
methods.

This first category of works naturally also addresses DIDs
and provide general insights into the DID design space, its
state, and some concrete challenges arising from its indepen-
dently developed DID methods. An early paper by Mühle et
al. [2] examines the state of SSI-compliant identifiers as part
of their overview of SSI components. The authors describe
DIDs as a high-level naming scheme and draw comparisons
to Uniform Resource Names (URNs). They go on to discuss
the problems of DID backup and recovery, before briefly
discussing different approaches for sharing of public key
material and metadata.

In the face of this emerging field and the subsequent
academic tackling of the topic, Cucko et al. [3] created an
overview of the current research area. For this purpose they
applied a systematic mapping methodology to get insights
into the makeup of the research area, the trends, associated
challenges and subsequent opportunities for future research in
the area of Self-Sovereign Identity.

Brunner et al. [4] take a structured look at the W3C DID
and Verifiable Credential (VC) standards. As part of that,
they discuss several aspects of DID methods. Revocation of
a DID in case of theft or loss of key material is brought up.
They also mention that tamper-proof timestamping to support
expiry dates is difficult to achieve, as the secure timestamping
mechanism would have to be reimplemented for every new
DID method supporting expiration. They also raise usability
concerns, including the issue of key recovery and lack of
human-friendly key material.

Lesavre et al. [5] discuss blockchain-based identity man-
agement following a taxonomic approach. While they men-
tion DIDs, they focus on structuring blockchain identifiers
in general, which are only a subset of all DID methods.
As part of their work, they discuss the often arising need
to register identifiers publicly and provide an overview of

different approaches. These range from on-chain registries,
over lightweight identifiers without on-chain transactions, to
approaches employing unspent transaction outputs (UTXOs)
on Bitcoin.

The concept of DIDs has also been investigated critically,
such as in the analysis of immunity passport concepts by
Halpin [6]. Here, the standard of DIDs was evaluated with
a focus on security and privacy questions. However, the eval-
uation was done in a systematic way but rather an unstructured
discussion based on the case study of an immunity passport.

Recognizing the challenges that the ever expanding set of
DID methods poses, the W3C has started an internal, but
publicly accessible, DID rubric3. It presents a large set of
criteria that can be applied to a DID method to evaluate and
characterize it. The rubric however is still arguably a difficult
starting point, even for a software architect. It assumes that
a practitioner already has an overview of the DID method
space and is capable of pre-selecting several methods to further
evaluate with a specific use case in mind. Only a few criteria
are evaluated for a very small set of methods to provide some
examples.

Similarly, during the 2022 Rebooting Web of Trust work-
shop, an evaluation methodology for DID methods was pro-
posed by Cunningham et al. [7]. This rubric was aimed at
product owners, implementers and standards bodies to help
them navigate the DID method landscape and gauge maturity
of different methods.

Fdhila et al. [8] have used the W3C DID rubric as a basis
to take a deeper look at six select DID methods. They ac-
knowledge the wide range of different methods and state they
have purposefully chosen very different examples to evaluate
in detail. Their work concludes that all the evaluated methods
possess their own strengths and weaknesses, justifying their
existence.

Finally, it shall be noted that several lists of DID methods
are maintained online. All of them include some dead or
incomplete methods. The W3C DID Specification Registries4

compile all known parameters and values used across different
methods. However, the document is still a work in progress
and advises against using it. Part of this document is a list
of DID methods under development that are able to meet
the minimum requirements outlined in the DID specification5.
Some minimal structure is provided by also listing what reg-
istry infrastructure is used, but the information is incomplete
and not always fully accurate.

The Universal Resolver project6 is intended to provide
one software that includes resolving capability for as many
DID methods as possible. It is open source, and part of
the public GitHub repository is a list of supported methods.
Next to the method identifier itself, links to the specification,
implementation, and some comments are included for most
methods.

3https://w3c.github.io/did-rubric/
4https://w3c.github.io/did-spec-registries/
5https://www.w3.org/TR/did-core/#methods
6https://github.com/decentralized-identity/universal-resolver



There are a two more lists online which appear to be
compiled by interested third-parties. The Decentralized Iden-
tity Web Directory is a website bundling a lot of identity-
related resources, including a list of DID methods with links
to the specifications7. Then, there is the DID Directory8. It
has taken the information from the W3C DID Specification
Registries and allows DID method authors to claim their
entry. Presumably, this would solve the problem of keeping
the directory up to date by relying on the method authors.
However, at the time of writing, only a small minority of
methods has been claimed.

IV. METHODOLOGY

We now elaborate on the methodology used to develop
our proposed taxonomy. As we are developing a taxonomy
in the information systems space, we chose to follow the
approach publicized by Nickerson et al. [9]. They present
an iterative approach towards developing a taxonomy that
combines empirical and conceptual strategies. At this point,
it is tried and tested and has rightfully established itself as the
de facto default for taxonomy development in the information
systems space.

A. Meta-Characteristic

One important corner stone of taxonomy development fol-
lowing Nickerson et al. is to define what is called a ”meta-
characteristic”. It exists to give purpose to a taxonomy under
construction and ensures that the choice of characteristics
is coherent. While this can be chosen later on during the
development of a taxonomy, we had a set goal from the
start. We aim to enable practitioners to efficiently select DID
methods to support and actively use with different stakeholders
for new or upgraded software systems. More specifically, the
practitioners we have in mind are mainly system architects and
researchers building pilot systems. With this goal in mind, we
define our meta-characteristic as follows:

The capabilities and usage characteristics of the DID meth-
ods, such as setup requirements, feature support, and cost.

We expect users of our taxonomy to have a basic under-
standing of what a DID is, but we do recognize that most
practitioners whose systems could benefit from embracing
decentralized standards do not have a strong background in de-
centralized identity. We instead assume them to be application-
savvy. They know what they need and generally do not have
time or motivation to do a technology deep-dive.

B. Ending Conditions

The other corner stone of the methodology following Nick-
erson et al. is defining ending conditions. These have to be
set at the very start to be referred back to in every iteration,
until they are finally met by the completed taxonomy. They
can be divided into objective and subjective ending conditions.
The objective ones provide a clear picture of the process

7https://decentralized-id.com/web-standards/w3c/wg/did/decentralized-
identifier/

8https://diddirectory.com/

and resulting taxonomy. In contrast, the subjective ending
conditions focus on the result only. We closely adapt our
ending conditions from Nickerson et al. because they form
a solid basis independent of meta-characteristic or specific
fields. We slightly modify some of them and add one additional
subjective ending condition. The resulting objective ending
conditions are explained in Table I and the subjective ones
in Table II.

C. Defining Objects

Up until now, we have cautiously avoided clarifying what
exactly an object is within the scope of this taxonomy. The
first solution coming to mind is making each DID method
an object. Or, later on, after grouping them, groups of DID
methods. When setting out to create this taxonomy, we first
spent some time examining any DID method specifications
we could find. After going through roughly 160 methods
and writing down some basic data such as the underlying
registry and also observations we made along the way. It soon
became obvious that it would not be feasible to meaningfully
classify DID methods because some of them have an incredible
range of possible DIDs within their specification. For example,
there are method specifications defining several sub-methods
or supporting vastly different registries. Especially the latter
is very common and also appears in less obvious ways. The
method did:ethr is one of the obvious examples. The method
was specifically engineered to support any Ethereum Virtual
Machine-compatible blockchain as storage for identifier in-
formation that can subsequently be used to construct a DID
document for a given DID, which contains a network identifier
as part of the method specific identifier. That means the
method covers networks ranging from the Ethereum mainnet,
a public permissionless blockchain with significant transaction
fees governed by Proof of Stake, to a small private networks
using Proof of Authority and consequently having no transac-
tion fees. These two extremes, and anything in between, have
vastly different implications for a practical user.

A less obvious example of registry variability is the DID
method did:web. It allows a user to create a DID by hosting a
DID document directly on a traditional web server addressed
via a domain name or a specific URL. Usually, this entails
buying a domain and paying for hosting. That creates an easy
to understand, human-readable DID with some initial setup
complexity and recurring cost. But, by using a public GIT
service, such as GitHub, everyone can host a DID document
for free with minimal effort, while giving up some control
over the URL that becomes the DID. This, again, has vastly
different implications for a potential user wanting to create
such a DID. And trying to accurately reflect these different
ways of using a DID method leads to dimensions that tend
to explode into a large number of characteristics trying to
capture—often contradicting—characteristic combinations as
one.

For these reasons, we ultimately decided to approach the
problem by subdividing DID methods. We refer to these
subdivisions as DID method instances. Each one refers to one



TABLE I
OBJECTIVE ENDING CONDITIONS

Objective Ending Condition Comment

All sufficiently mature specifications from the Universal
Resolver and the W3C Registries List have been exam-
ined.

Both of these sources together provide a pool of ca. 160 DID method specifications before
curating them further. Even taking into account a significant rate of abandoned and incomplete
specifications, that is an extensive and exhaustive sample size.

No object was merged with a similar object or split into
multiple objects in the last iteration.

Changes to the structure of the taxonomy might have a ripple effect, requiring further changes
before it is conforming to the ending conditions. Splitting objects might create a new dimension
with a new characteristic for each resulting object. Then that new dimension needs to be further
examined for additional characteristics.1

At least one object is classified under every character-
istic of every dimension.

Including characteristics that are not found in existing DID methods might be interesting from
a research perspective to uncover gaps in the design space. However, we design a tool for
practitioners that can only choose from what exists and is usable.

No new dimensions or characteristics were added in the
last iteration.

Again, changes to the structure of the taxonomy might require adjustments to other parts of the
taxonomy. Adding a new and important dimension might increase the size of the dimension to
a degree where removal of another dimension of lesser importance should be considered.

No dimensions or characteristics were merged or split
in the last iteration.

Merges or splits in characteristics and dimensions might reflect a change in targeted granularity
of the taxonomy. This change of course needs to be propagated through the entire taxonomy
before one can stop.

Every dimension is unique and not repeated. Dimensions that add no or not enough value due to repeated information just needlessly bloat
the taxonomy.

Every characteristic is unique. Here we slightly deviate from Nickerson et al. by making the condition more strict. Each
dimension should be distinct from the other dimensions, and thus there should never be overlap
between the characteristics. That ensures an objective degree of conciseness.

Each combination of characteristics is unique to one
object and not repeated.

This is an important condition as we want the taxonomy to be as manageable in size as possible.

TABLE II
SUBJECTIVE ENDING CONDITIONS

Subjective Ending Condition Comment

Concise It should be possible to get some overview of the taxonomy upon first glance. We deliberated turning this into an objective
ending condition by committing to a specific maximum of dimensions, but came to the conclusion that it might not be in
the best interest of developing a useful taxonomy to arbitrarily limit the dimensionality.

Robust The dimensions and characteristics should be chosen to provide meaningful separation between objects. Specifically, a
practitioner must be able to gain actionable information from the classification of an object.

Comprehensive We already define an objective measure of comprehensiveness regarding object inclusion as our first objective ending
condition. Thus, subjective comprehensiveness is focused on the inclusion of dimensions. Specifically, we consider our
taxonomy to be comprehensive if the dimensions cover key questions that a practitioner would have about a DID method.

Extendible Keeping the rapid pace of development in the decentralized identity field in mind, we aim to construct our taxonomy in a
way that makes it possible to add new dimensions or characteristics. Specifically, that entails the avoidance of unspecific
bundling characteristics along the lines of ”all others”.

Explanatory The taxonomy’s main purpose is to provide meaningful information about DID methods that indirectly explains the
consequences of and requirements for using a given DID method.

Timeless We want this taxonomy to be useful many years in the future and thus cannot focus on aspects that would be obsolete
within months, given the pace of development. For example, that means we cannot include information regarding software
support.

specific usage pattern of a given DID method conforming,
but not necessarily explicitly mentioned in, its specification.
The taxonomy we propose in this work is classifying objects
that are groups of DID method instances. Every group has one
associated DID method instance that is a prime example for the
group. We never consider single DID method instances, even
if we might only be aware of a single one within a group,
because the DID methods, and thus DID method instances,
might change a lot in the future. But the groups and their
characteristics will most likely persist.

D. Limitations

Next, we want to address some limitations that our method-
ology imposes on our resulting taxonomy. First, we cannot in-
clude DID methods that we do not have sufficient information
on. That means that all incomplete or imprecise DID method
specifications were excluded from the taxonomy building
process. Especially, company created DID methods are often
lacking transparency about the underlying infrastructure. Also,
some method specifications were not available in English and
were consequently excluded as well. This should be a minor



limitation, though, because a DID method with inadequate
specification probably has no viable software support anyway.
In addition, we have also excluded the few existing joke
methods, such as did:did. They were never meant or suited
to be taken seriously by a practitioner.

Second, the commitment to creating a taxonomy that can
serve as a long-lasting tool in a fast-moving space imposes
some restrictions on feasible characteristics and thus dimen-
sions. For this reason, we cannot include maturity levels or
details on implementation support, as they evolve quickly over
time.

Third, we may miss some possible DID method instances
that we are not aware of. If they are not explicitly included in
a DID method specification, it takes prior experience with the
method, its underlying registry technology, and some creativity
to infer all possible DID method instances. There is nothing
we can do to specifically mitigate this. It is always a risk to
miss objects when constructing a taxonomy. As we build with
extensibility in mind, we are confident that small amounts of
new DID method instances could easily be added in the future.

E. Building the Taxonomy

In total, we were able to identify around 160 DID methods.
Many of them are in a very early phase of development,
abandoned, or both. To start a meaningful taxonomy, we thus
looked at the list of methods included in the universal resolver
first. Still, we had to remove a few methods due to incomplete
documentation. From there on, after the first empirical-to-
conceptual iteration, we focused on conceptual-to-empirical
iterations to further round out the range of dimensions and
characteristics. Towards the end, we then circled back to
empirical-to-conceptual iterations to examine all further DID
methods we could find from open lists or via snowballing from
specifications and documentations.

V. A PROPOSED TAXONOMY FOR DID METHOD
SELECTION

Our proposed taxonomy is shown in Table III. As elaborated
on earlier in Section IV-C, we classify groups of DID method
instances. We have named these groups we formed from
all of the different DID instances we examined, and tried
to keep the names as short as possible while preserving
descriptiveness. For illustrative purposes, we have also added
one or more examples for every DID method instance group.
In the following sections, we first take a deeper look at our
chosen dimensions with all of their characteristics. Then, we
describe how a practitioner might use the taxonomy to select
relevant DID methods for a project.

A. Dimensions

The taxonomy consists of seven dimensions with between
two and five characteristics each. In the following, we go
through all of them and discuss them in detail.

Use Case This first dimension separates the DID method
instances by intended use case. Because we expect most
practical uses being served by general-purpose DIDs and

because we want to preserve the approachability of the
taxonomy, we have chosen to not distinguish between
different specific use cases. Thus, the dimension has only
these characteristics:

– General: designed for general-purpose use
– Specific: designed to serve a specific use case

Registry Technology The second dimension focuses on the
technology of the registry used by a DID method instance.
The registry is not necessarily what the DID document
is written to, but rather whatever is holding the authority
to establish consensus on what DID document is correct
and, if the method supports, also at what time. That means
that if multiple storages are used, such as did:ion using
Ethereum to anchor and timestamp its DID document
operations executed on the Ceramic network, we consider
Ethereum to be the registry. We identified the following
different types of registry:

– Self-Contained: no registry is needed as all informa-
tion is derived from the DID itself

– DLT: the DID is registered on a distributed ledger
– Web Service: the DID is registered using some type

of web service
– DHT: the DID is registered in a distributed hash

table, such as the interplanetary file system (IPFS)
Deployment Requirement The next dimension describes

the nature of potentially needed deployment to support
the use of a certain DID method instance. It is important
to note that we specifically address deployment, not
hosting. If a deployment is needed, we make no statement
on whether it is hosted directly by a practitioner or
contracted out in some way. The dimension only states
whether a personal deployment of some sort is required
to adopt a DID method instance. The characteristics are
as follows:

– No Deployment: some registries, such as public
blockchains, can be accessed via existing deployed
nodes and do not require a new deployment

– Independent Deployment: a personal deployment
that can be independently set up, such as an inter-
planetary file system (IPFS) node, is required

– Coordinated Deployment: a personal deployment is
required and needs to be coordinated with other new
deployments by cooperating parties, as is the case
for a consortium blockchain

Operation Support DID methods can support different
ranges of the classic CRUD operations: Create, Read
(or Resolve), Update, Delete (or Deactivate). Only the
first two operations are mandatory due to them being
required for any meaningful use of a DID. Delete is a
special case when it comes to DIDs. Depending on the
registry technology, it might not be possible to delete any
data. For example, a public blockchain with its permanent
record of history would prevent real data deletion. Thus,
we consider the last CRUD operation to be Deactivate.
For the majority of use cases, it should be sufficient to



TABLE III
PROPOSED TAXONOMY FOR DID METHOD SELECTION

U
se

C
as

e

R
eg

is
tr

y
Te

ch
no

lo
gy

D
ep

lo
ym

en
t

R
eq

ui
re

d

O
pe

ra
tio

n
Su

pp
or

t

E
xp

lic
it

C
os

t

Id
en

tifi
er

Fo
rm

at

D
ID

D
oc

um
en

t
C

ap
ab

ili
tie

s

DID Instance Group Name
Example Method Instances

G
en

er
al

Sp
ec

ifi
c

Se
lf

-C
on

ta
in

ed

D
LT

W
eb

Se
rv

ic
e

D
H

T

N
o

D
ep

lo
ym

en
t

In
de

pe
nd

en
t

D
ep

lo
ym

en
t

C
oo

rd
in

at
ed

D
ep

lo
ym

en
t

C
R

C
R

U
D

Fr
ee

W
ri

te
Fe

e

R
ec

ur
ri

ng
C

os
t

W
ri

te
Fe

e
+

R
ec

ur
ri

ng
C

os
t

N
ot

H
um

an
-R

ea
da

bl
e

H
um

an
-R

ea
da

bl
e

M
in

im
al

B
as

ic

K
ey

s

Se
rv

ic
es

A
rb

itr
ar

y
D

at
a

Expressive Lightweight DIDs
peer x x x x x x x

Simple Lightweight DIDs
key, pkh x x x x x x x

Basic Consortium DLT DIDs
ev:<consortium mnid> x x x x x x x

Basic Public DLT DIDs
ev:<mainnet mnid> x x x x x x x

Custom DNS-based DIDs
web:<mydomain> x x x x x x x

Free DHT-based DIDs
oyd + public log server x x x x x x x

Free Service Capable Public DLT DIDs
ion + 3rd party anchor x x x x x x x

Free Human-Readable DIDs
web:github.com:<path> x x x x x x x

Fully Capable Consortium DLT DIDs
indy:<myconsortium>

x x x x x x x

Fully Capable DHT-based DIDs
onion, gns, ipid x x x x x x x

Free Fully Capable Layer 2 DIDs
3 + public CAS x x x x x x x

Fully Capable Permissioned DLT DIDs
indy:sovrin, sov x x x x x x x

Fully Capable Public DLT DIDs
polygon, iota:main x x x x x x x

Fully Capable Rented Public DLT DIDs
sol x x x x x x x

Human-Readable DLT NS DIDs
ens:mainnet x x x x x x x

Human-Readable Name System DIDs
dns x x x x x x x

Service Capable Consortium DLT DIDs
ethr:<myconsortium>

x x x x x x x

Service Capable DHT-based DIDs
orb + own log servers x x x x x x x

Service Capable Public DLT DIDs
ethr:mainnet x x x x x x x

Generative Asset Identifying DIDs
asset x x x x x x x

Content Code Claimant DIDs
iscc x x x x x x x

Private Document Identifying DIDs
schema:<private ipfs> x x x x x x x

Public Document Identifying DIDs
schema:public-ipfs x x x x x x x

Specialized Consortium DLT DIDs
hpass x x x x x x x

Specialized Fully Capable DLT DIDs
panacea x x x x x x x



indicate deactivation of an identity. Personally identifiable
information that would call for real deletion should never
be written on a public blockchain in the first place.
We observed two different sets of supported operations
leading to these characteristics:

– CR: creating and resolving are supported
– CRUD: the full spectrum of CRUD operations is

supported

Explicit Cost Apart from any cost incurred through deploy-
ment, which we have addressed in a previous dimension,
there may be fixed costs associated with the adoption of
a DID method instance, such as transaction fees on a
public distributed ledger. It should be noted that these
costs do not necessarily have to be paid by the DID
controller. Depending on the exact use case, it might be
desirable that a third party covers these. Because these
fees can vary heavily from registry to registry and also
over time, we do not categorize the cost by concrete
amounts, but rather by cost model. For that, we have
defined the following characteristics:

– Free: no cost is incurred
– Write Fee: fees have to be paid for write operations,

which usually include creating, updating, and deac-
tivating a DID

– Recurring Cost: fees have to be paid continuously
for the usage duration of a DID, for example in the
form of a subscription

– Write Fee + Recurring Cost: fees for write operations
have to be paid on top of some continuous cost

Identifier Format The DID method specific part of a DID
can take many different forms leading to different length
and complexity of identifiers. In some cases, it might
be useful or even necessary for humans to interact with
the identifier. Therefore, we introduce the following two
characteristics:

– Not Human-Readable: the identifier is based on a
format not intuitive for humans, such as some type
of hash of a public key

– Human-Readable: the identifier can be read, spoken,
and remembered with relative ease

DID Document Capabilities The W3C DID standard itself
imposes no limits on how much or what kind of data
a DID document may contain. However, depending on
design intent and registry infrastructure, the kinds of
information that can be managed through a specific DID
method instance are often limited. We have structured the
characteristics representing this as follows:

– Minimal: the DID document is purely descriptive and
does not contain any key material

– Basic: the DID document contains exactly one key
that cannot be rotated

– Keys: the method supports full key management
– Services: the method supports full key management

and service descriptions

– Arbitrary Data: the method supports managing arbi-
trary data as part of the DID document

B. Using the Taxonomy

While this taxonomy might be useful to different kinds of
users, we primarily envision practitioners to benefit from using
it. Software architects working on a system that needs DIDs
will likely encounter two general design questions regarding
DID method support. First, they will have to choose one or
two DID methods to be used by a select few actors critical to
the use case. An example for this might be universities that
are supposed to use their DIDs to issue digital diplomas in the
form of W3C Verifiable Credentials (VCs). The other question
pertains to what DID methods to support for the new system.
Until a true universal resolver exists, any system can only
support a limited number of DIDs, which should be chosen
with the needs of the general user base taken into account.

A practitioner having limited experience with DIDs, which
is likely given the relatively young age of the standard, will be
faced with a steep learning curve. Consulting this taxonomy
should help to quickly understand the possible differences
between DID methods from a user perspective. Armed with
a basic understanding of DIDs and project requirements, a
practitioner can follow these steps:

1) Using the project requirements, the practitioner can
iteratively exclude DID method instances with certain
characteristics.

2) Having narrowed down the candidate pool of DID
method instances to just a few, the practitioner can
look into the provided examples to better understand
the possible choices for their specific use case.

3) Having an understanding of what methods are suitable
for their project, the practitioner is equipped to branch
out on their own and find further relevant methods.
For these, the practitioner can also look into point-
in-time dependent characteristics like maturity of the
method and software support, before ultimately making
an informed decision.

VI. CONCLUSION

This paper proposes a taxonomy of DID method instances
designed to support practitioners in navigating the large space
of possible DID methods to choose from. In comparison to
previous works, we have taken a look at the full DID method
landscape, explicitly adopted the viewpoint of a practitioner,
and taken care to avoid time dependent characteristics for the
sake of this work’s longevity. Consequently, this taxonomy is
designed to be the first and most important—rather than the
only—tool a practitioner can use to then dive into focused
review of timely material, such as documentation. We also
anticipate our work to be useful to a wider audience, including
but not limited to DID method creators, regulators, and web3
enthusiasts. The field of Decentralized Identifiers is still young,
and comprehensive high-level overviews of this complex DID
method space have not existed before.



We see several opportunities for further research. First, we
have purposefully been as value neutral as possible about
the DID methods instances and their characteristics in this
work. But, with DIDs being an integral component of Self-
Sovereign Identity (SSI) and there being a general push for
decentralization of the web, it might be of interest to explicitly
evaluate characteristics, such as grade of decentralization,
registry infrastructure longevity, and level of tamper resistance.

Next, one could expand this work into a fully developed
DID method selection methodology based on a decision tree.
Because the dimensions of this taxonomy are chosen to answer
important questions for adoption, the taxonomy could function
as the basis for an interactive question catalog complemented
by an index of up-to-date DID methods by instance group.
The final artifact could be a standalone tool that enables a
practitioner to find suitable DID methods for their use case.

During this work, we experienced first-hand how little
standardization there still is for DID method specifications.
That includes vast differences in format, completeness of
information, information density, and even versioning of the
specification. Any work contributing to making DID method
specifications themselves more approachable would be valu-
able.

Finally, the taxonomy might benefit from being amended
at a later point in time when the DID landscape has evolved
further. New methods might require new groups and charac-
teristics to be adequately classified.

ACKNOWLEDGMENT

This work has been funded by the German Federal Ministry
of Education and Research (BMBF) under grant M534800.
The responsibility for the content of this publication lies with
the authors.

REFERENCES

[1] C. Allen. (2016) The path to self-sovereign identity. Accessed: 26/2/2023.
[Online]. Available: http://www.lifewithalacrity.com/2016/04/the-path-to-
self-soverereign-identity.html

[2] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel, “A survey
on essential components of a self-sovereign identity,” Computer Science
Review, vol. 30, pp. 80–86, 2018.

[3] Š. Čučko and M. Turkanović, “Decentralized and self-sovereign identity:
Systematic mapping study,” IEEE Access, vol. 9, pp. 139 009–139 027,
2021.

[4] C. Brunner, U. Gallersdörfer, F. Knirsch, D. Engel, and F. Matthes, “Did
and vc: Untangling decentralized identifiers and verifiable credentials for
the web of trust,” in 2020 the 3rd International Conference on Blockchain
Technology and Applications, 2020, pp. 61–66.

[5] L. Lesavre, P. Varin, P. Mell, M. Davidson, and J. Shook, “A taxonomic
approach to understanding emerging blockchain identity management
systems,” NIST CYBERSECURITY WHITEPAPER, 2019.

[6] H. Halpin, “Vision: A critique of immunity passports and w3c decentral-
ized identifiers,” in Security Standardisation Research: 6th International
Conference, SSR 2020, London, UK, November 30–December 1, 2020,
Proceedings 6. Springer, 2020, pp. 148–168.

[7] C. Cunningham, Chaves, Franco Diogo, and R. Grant, “Is this did method
ready to be endorsed? useful rubric criteria,” Rebooting the Web of Trust,
vol. 11, 2022.

[8] W. Fdhila, N. Stifter, K. Kostal, C. Saglam, and M. Sabadello, “Methods
for decentralized identities: Evaluation and insights,” in Business Process
Management: Blockchain and Robotic Process Automation Forum: BPM
2021 Blockchain and RPA Forum, Rome, Italy, September 6–10, 2021,
Proceedings 19. Springer, 2021, pp. 119–135.

[9] R. C. Nickerson, U. Varshney, and J. Muntermann, “A method for taxon-
omy development and its application in information systems,” European
Journal of Information Systems, vol. 22, no. 3, pp. 336–359, 2013.


